

DP-003-1164004

Seat No. _____

M. Sc. (Sem. IV) Examination

March - 2022

Mathematics: CMT-4004

(Graph Theory)

Faculty Code: 003

Subject Code: 1164004

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All the questions are compulsory.

- (2) There are total five questions.
- (3) Each question carries equal marks (14).
- 1 Answer any seven questions:

 $7 \times 2 = 14$

- (1) Define terms: Isomorphism of two graphs, Subgraph, Vertex disjoint subgraph and Edge disjoint subgraph.
- (2) Define terms: Hamiltonian Cycle, Hamiltonian graph, Eulerian graph and Open Eulerian graph.
- (3) Define term: Minimally connected graph. Also draw a graph G, with $|V(G)| \ge 5$ and G is a minimally connected graph.
- (4) Give two non isomorphic graphs G_1 and G_2 , which are having properties $|V(G_1)| = |V(G_2)|, |E(G_1)| = |E(G_2)|$ and for any non-negative integer t, the number of vertices in G_1 with degree t and the number of vertices in G_2 with degree t are same.
- (5) State and prove, First Fundamental Theorem of Graph Theory.
- (6) State Euler's Theorem.
- (7) Write down terms: Fundamental cycle and Fundamental cut-set of a connected graph G with respect to a spanning tree T.
- (8) Define term: Weighted graph and Minimal spanning tree.
- (9) Define term: Edge connectivity and Vertex connectivity.
- (10) Draw a graph G, so that the vertex connectivity for G=2, the edge connectivity for G=3 and $\delta(G)=\min_{v\in V(G)}d_G(v)=4$.

1

2 Answer any two questions:

- $2 \times 7 = 14$
- (a) Let G be a finite graph. Prove that there are subgraphs $g_i = (V_i, E_i), i = 1, 2,, k$, for some $k \ge 1$ such that,
 - (i) Each g_i is a maximal connected subgraph of G.
 - (ii) $V_i \cap V_i = \emptyset, i \neq j \text{ and } i, j \in \{1, 2,, k\}.$
 - (iii) $V = V_1 \cup \cup V_k$ and $E = E_1 \cup \cup E_k$.
 - (iv) If g = (W, F) be any connected sub graph of G, then g must be a subgraph g_i , for some $i \in \{1, 2, ..., k\}$.
- (b) Let G be a simple graph with n vertices, q edges and k number of components in G. Prove that, $q \le \frac{1}{2}(n-k)(n-k+1)$.
- (c) Let G be graph and it does not contain any self loop. Suppose for any pair of vertices $u, v \in V(G)$, there is a unique path between u and v in G. Prove that, G is a tree.
- 3 Answer following one questions:

- 1×14=14
- (1) Let G be a connected graph with $E(G) \neq \emptyset$. Prove that G is an Eulerian graph if and only if it can be decomposed into edge disjoint cycles.
- (2) Define term: Maximal non-Hamiltonian graph. Let G be a simple graph, |V(G)| > 2 and $d_G(v) \ge \frac{n}{2}, \forall v \in V(G)$. Prove that, G is a
- 4 Answer following two questions:

Hamiltonian graph.

- $2 \times 7 = 14$
- (a) Let T be a tree and it has at least two vertices. Let $P = u_0 - u_1 - u_2 - \dots u_n$ be a longest path in T. Prove that, u_0 and u_n both are pendent vertices in T.
- (b) For a tree T, with |V(T)| = n, prove that T has n-1 edges.
- (c) Prove that, a graph G is a minimally connected graph if and only if it is a tree.

5 Answer following two questions:

- $2 \times 7 = 14$
- (i) Let T be a tree with $|V(T)| \ge 2$. Prove that, T is a 2-chromatic graph.
- (ii) Define adjacency matrix for a graph G. Write down adjacency matrix for C_6 . Also write down at least four properties for the adjacency matrix X(G), for a graph G.
- (iii) Let G be a connected graph. Prove that, G is an Open Euler graph if and only if G has precisely two odd vertices and remaining are even vertices.
- (iv) Let T be a tree with n vertices $(n \ge 2)$. Prove that, T has either one center or two centers. Also prove that, in the case of T has two centers, they must be adjacent by an edge in T.